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Abstract. A conjecture of Goldfeld implies that a positive proportion of quadratic
twists of an elliptic curve E/Q has (analytic) rank 1. This assertion has been
confirmed by Vatsal [V1] and the first author [By] for only two elliptic curves.
Here we confirm this assertion for infinitely many elliptic curves E/Q using the
Heegner divisors, the 3-part of the class groups of quadratic fields, and a variant
of the binary Goldbach problem for polynomials.

1 Introduction

Let E/Q : y2 = x3 + ax + b be an elliptic curve over Q and let L(s,E) =∑∞
n=1 a(n)n−s be its Hasse-Weil L-function defined for <(s) > 3

2 . The work
of Breuil, Conrad, Diamond, Taylor and Wiles [B-C-D-T] [T-W] [Wi] implies
that L(s,E) has an analytic continuation to C and satisfies a functional equa-
tion relating the values at s and 2 − s. Let D be the fundamental discriminant
of the quadratic field Q(

√
D), and let χD = (D

· ) denote the usual Kronecker
character. For D coprime to the conductor of E, the Hasse-Weil L-function of
the quadratic twist ED : Dy2 = x3 + ax + b of E is the twisted L-function
L(s,ED) =

∑∞
n=1 χD(n)a(n)n−s which also has an analytic continuation to C

and satisfies a functional equation relating the values at s and 2−s. Goldfeld [Go]
conjectured that ∑

|D|<X

Ords=1L(s,ED) ∼ 1
2

∑
|D|<X

1.
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A weaker version of this conjecture is that for r = 0 or 1,

]{|D| < X| Ords=1L(s,ED) = r} � X. (1)

For the case r = 0, there is remarkable progress [J] [O] [O-S] [V2]. In particular,
it is known that there are infinitely many E such that (1) holds with r = 0 [V2].
But for the case r = 1, we know only two elliptic curves satisfying (1) [By] [V1].
For more results on Goldfeld’s conjecture, see Chapter 9 of [O1]. In this direction,
we shall show the following theorem.

Theorem 1.1 There are infinitely many elliptic curves E/Q such that Ords=1

L(s,ED) = 1 for a positive proportion of fundamental discriminants D.

Remark 1. By ”infinitely many elliptic curves E/Q”, we mean infinitely many
E/Q with distinct j-invariants.

Remark 2. Theorem 1.1 answers Problem 9.33 in [O1].

In Section 3, as in [By] [V1], using a theorem of Davenport and Heilbronn [D-H]
on the 3-parts of the class groups of quadratic fields, a theorem of Gross [Gr] on the
non-triviality of Heegner points, and Gross and Zagier’s theorem [G-Z] on Heegner
points and derivatives of L-series, we shall prove the following Theorem 1.2. A
new ingredient in this theorem is the relation between Dedekind eta-products and
cuspidal divisors, which will be stated in Section 2 and used to show the non-
triviality of Heegner points.

Before stating Theorem 1.2, we shall briefly explain some notions and facts.
Let E/Q be an elliptic curve of conductor N and X0(N) the modular curve of level
N with Jacobian J0(N). The work of Breuil, Conrad, Diamond, Taylor and Wiles
[B-C-D-T] [T-W] [Wi] shows that there is a surjective morphism φ : X0(N) → E
defined over Q, which uniquely factors in J0(N) through a homomorphism π :
J0(N) → E. An elliptic curve E/Q is said be optimal if ker(π) is connected.
There is a unique optimal elliptic curve E in any isogeny class of elliptic curves
defined over Q of conductor N . Let δ denote a positive divisor of N and let r = (rδ)
a family of rational integers rδ ∈ Z. Let η(z) be the Dedekind eta-function and
ηδ(z) := η(δz). It is known [Li] that if D0 is a Q-rational cuspidal divisor of order
l in J0(N), then there is a Dedekind eta-product gr =

∏
δ|N ηrδ

δ which is a modular
function on X0(N) defined over Q and satisfies div gr = lD0. The Dedekind eta-
product gr is said to be l-power like if

∏
δ|N

δrδ is the lth-power of a rational number.

For more details on Dedekind eta-products, see Section 2.
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Theorem 1.2 Let E/Q be an elliptic curve of conductor N . Let X0(N) be the
modular curve of level N with Jacobian J0(N), φ : X0(N) → E a surjective
morphism, which factors in J0(N) through π : J0(N) → E, and π∗ : E → J0(N)
its dual map. Suppose that

(i) the sign ε of the functional equation of L(s,E) is equal to +1,
(ii) E has a Q-rational 3-torsion point P ,
(iii) π∗(P ) is a Q-rational cuspidal divisor of order 3 in J0(N),
(iv) the Dedekind eta-product gr such that div gr = 3π∗(P ) is not 3-power like.

Then Ords=1L(s,ED) = 1, for a positive proportion of fundamental discriminants
D.

In Section 4, we shall find a family of elliptic curves which satisfy the conditions
in Theorem 1.2. The most expected family would come from the following result
[Theorem 1.2, Du] [V3];

Let l be a prime number. Let E′/Q be an elliptic curve of conductor N
such that l2 6 |N , and let E be the optimal elliptic curve in the isogeny
class of E′. If E′ has a Q-rational l-torsion, then E has a Q-rational
l-torsion point P such that π∗(P ) is a Q-rational cuspidal divisor of
order l in J0(N).

But we do not know whether these elliptic curves also satisfy the condition (iv) in
Theorem 1.2 or not. In fact, some of these elliptic curves have the corresponding
gr which is l-power like. So, instead of using this result, we will use the more
explicit result of Dummigan [Du], which will be stated in Proposition 4.1. And we
shall show the following theorem.

Theorem 1.3 Let E/Q be an optimal elliptic curve of square-free conductor N .
Let F be the associated newform, and for d|N let ωd = ±1 be such that WdF =
ωdF , where Wd is the Atkin-Lehner involution. Suppose that

(i) N = pq, where p, q are different primes such that ωp = −1, ωq = 1 and p 6= 3,
q ≡ −1 (mod 9),
(ii) there is an elliptic curve E′/Q which is isogenous over Q to E and has a
Q-rational 3-torsion point.

Then Ords=1L(s,ED) = 1, for a positive proportion of fundamental discriminants
D.

Finally, in Section 5, using some results [B-K-W] [Pe] on the binary Goldbach
problem for polynomials, we shall show that there are infinitely many elliptic curves
satisfying the conditions in Theorem 1.3 and complete the proof of Theorem 1.1.
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2 Dedekind eta-products and cuspidal divi-

sors

Let N be a positive integer and let δ denote a positive divisor of N . Let r = (rδ)
be a family of rational integers rδ ∈ Z indexed by all the positive divisors δ of N .
Let

gr =
∏
δ|N

ηrδ
δ ,

where η(z) is the Dedekind eta-function and ηδ(z) := η(δz). Then we have the
following Proposition.

Proposition 2.1 ([Proposition 3.2.1, Li]) The Dedekind eta-product gr is a mod-
ular function on X0(N) defined over Q, i.e., gr ∈ Q(X0(N)) if and only if the
following conditions are satisfied:

(i)
∑
δ|N

rδ = 0,

(ii)
∑
δ|N

δ rδ ≡ 0 (mod 24),

(iii)
∑
δ|N

N

d
rδ ≡ 0 (mod 24),

(iv)
∏
δ|N

δrδ ∈ Q2.

To state Theorem 1.2, we need the following definition.

Definition 2.2 For an odd prime l, the Dedekind eta-product gr =
∏

δ|N ηrδ
δ is

said to be l-power like if
∏
δ|N

δrδ is the lth-power of a rational number.

As representatives of the cusps of X0(N), we use the rational numbers x
d where

d|N , d > 0 and (x, d) = 1 with x taken modulo (d, N/d). We say that such a cusp
x
d is of level d and it is defined over Q(ζm), where m = (d, N/d). Let (Pd) denote
the divisor on X0(N) defined as the sum of all the cusps of level d (each with
multiplicity one). Then (Pd) is invariant under Gal(Q̄/Q) and the Q-rational
cuspidal subgroup C(N) of J0(N) is generated by divisor classes of divisors of the
kind

φ((d, N/d))P1 − (Pd),
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as d runs through the positive divisors of N . And we have the following relation
between Q-rational cuspidal divisors of degree 0 and Dedekind eta-products.

Proposition 2.3 ([Proposition 3.2.10, Li]) Let D0 =
∑

d|N md(Pd) be a Q-rational
cuspidal divisor of degree 0 of X0(N), i.e.,∑

d|N
φ((d, N/d))md = 0.

Then there exists a Dedekind eta-product gr ∈ Q(X0(N)) such that div gr = lD0

and l is the order of D0.

The following proposition is needed to state and prove Theorem 1.2.

Proposition 2.4 Let E/Q be an elliptic curve of conductor N . Let X0(N) be
the modular curve of level N with Jacobian J0(N), φ : X0(N) → E a surjective
morphism, which factors in J0(N) through π : J0(N) → E, and π∗ : E → J0(N)
its dual map. Suppose that E has a Q-rational l-torsion divisor point P = [A],
where A is a Q-rational divisor of degree 0 of E, and π∗(A) = [B] where B is a
Q-rational cuspidal divisor of degree 0 with order l of X0(N). Let f ∈ Q(E) such
that div f = lA. Then f ◦ φ = αgr · gl ∈ Q(X0(N)) for some constant α ∈ Q,
Dedekind eta-product gr and g in Q(X0(N)).

Proof: Let φ∗ : Div0(E) → Div0(X0(N)) be the homomorphism corresponding
to φ : X0(N) → E. Since π∗(P ) = [B], we can write φ∗(A) = B + div g, for
some g ∈ Q(X0(N)). By Proposition 2.3, there exists a Dedekind eta-product
gr ∈ Q(X0(N)) such that div gr = lB. But

div(f ◦ φ) = φ∗(divf) = φ∗(lA) = lφ∗(A) = lB + ldiv g.

(Cf. [p. 33 Proposition 3.6, Si].) Thus div (f ◦ φ) = div (gr · gl) and we have
f ◦ φ = αgr · gl for some constant α ∈ Q. (Cf. [p. 32 Proposition 3.1, Si].) 2

3 Proof of Theorem 1.2

To prove Theorem 1.2, we need the following proposition.

5



Proposition 3.1 Let E/Q be an elliptic curve of conductor N . Let X0(N) be
the modular curve of level N with Jacobian J0(N), φ : X0(N) → E a surjective
morphism, which factors in J0(N) through π : J0(N) → E, and π∗ : E → J0(N)
its dual map. Suppose that

(i) the sign ε of the functional equation of L(s,E) is equal to +1,
(ii) E has a Q-rational l-torsion point P ,
(iii) π∗(P ) is a Q-rational cuspidal divisor of order l in J0(N),
(iv) the corresponding gr to π∗(P ) in Proposition 2.4 is not l-power like.

Let K be an imaginary quadratic field with the discriminant DK(6= −3). Suppose
that

(v) every prime factor of N splits completely in K,
(vi) EDk

has no Q-rational l-torsion point,
(vii) l does not divide the class number h(DK) of K.

Then we have
Ords=1L(s,EDK

) = 1.

Proof: Let OK be the ring of integers of K and a an ideal of OK . By the
condition (v), we can define the Heegner point on X0(N) with coordinates j(a),
j(nτa), where (N) = n · nτ in K and τ is the complex conjugation. We denote it
by

(OK ,n, [a]),

where [a] denotes the ideal class of K containing a. Following Birch, Stephens
[B-S] and Gross [Gr], let

P ∗
E(DK , 1, 1) :=

∑
a∈Pic(OK)

φ((OK ,n, [a])) −
∑

a∈Pic(OK)

φ((OK ,n, [a])τ ).

Then by the condition (i),

P ∗
E(DK , 1, 1) ∈ EDK

(Q).

By the condition (ii), there is f ∈ Q(E) such that divf = lA, where P = [A]
and A ∈ Div0(E). Then by Weil’s reciprocity law, f induces a homomorphism

δ : E(K)/lE(K) → K∗/(K∗)l,
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in particular, which gives

δ(P ∗
E(DK , 1, 1)) =

∏
a∈Pic(OK)

f(φ((OK ,n, [a])))
f(φ((OK ,n, [a])τ ))

.

By the condition (iii) and Proposition 2.4, f ◦ φ = αgr · gl for some constant
α ∈ Q , Dedekind eta-product gr and g ∈ Q(X0(N)). Thus

δ(P ∗
E(DK , 1, 1)) =

∏
a∈Pic(OK)

αgr((OK ,n, [a]))
αgr((OK ,n, [a])τ )

· (
∏

a∈Pic(OK)

g((OK ,n, [a]))
g((OK ,n, [a])τ )

)l

= βl ·
∏

a∈Pic(OK)

gr((OK ,n, [a]))
gr((OK ,n, [a])τ )

,

for some β ∈ K.
For each positive divisor d of N , we denote by nd the unique OK-ideal of norm

d with nd|n. From the definition of gr and the condition (i) in Proposition 2.1, we
have that

gr((OK ,n, [a]))24 =
∏
d|N

∆(nda)rd =
∏
d|N

(
∆(nda)
∆(a)

)rd

.

And we know that ∆(a)/∆(nda) is an integer in the Hilbert class field H of K
which generates the ideal n12

d and from the condition (iv) in Proposition 2.1, we
have ∏

d|N
nrd

d = m−2,

for some fractional OK-ideal m. Thus δ(P ∗
E(DK , 1, 1)) is an element in K∗ which

generates the ideal (βl) · (m/mτ )h(DK) and

δ(P ∗
E(DK , 1, 1)) = ζ · βl · γh(DK)/O(m),

where ζ is a root of unity in K∗, γ is a generator of the principal ideal (m/mτ )O(m)

and O(m) is the order of m in Pic(OK). Hence by the conditions (iv),(vii),
δ(P ∗

E(DK , 1, 1)) is not an lth-power and by the condition (vi), δ(P ∗
E(DK , 1, 1))

has infinite order in EDK
(Q).

Finally Gross and Zagier’s theorem [G-Z] on Heegner points and derivatives of
L-series implies that Ords=1L(s,EDK

) = 1 and we completed the proof. 2

Now we can prove Theorem 1.2.
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Proof of Theorem 1.2; For any elliptic curve E/Q, there are only finitely many
fundamental discriminants D such that ED has a Q-rational 3-torsion point. A
theorem of Davenport and Heilbronn [D-H] (as refined by Nakagawa and Horie
[N-H]) on the 3-parts of the class groups of quadratic fields implies that for a
positive proporion of negative fundamental discriminants D, every prime factor of
N splits in the imginary quadratic fields Q(

√
D) and 3 does not divide the class

number of Q(
√

D). Thus Theorem 1.2 follows from Proposition 3.1 for the case of
l = 3. 2

4 Proof of Theorem 1.3

Let E/Q be an optimal elliptic curve of square-free conductor N . Let l be an
odd prime such that l 6 |N . Under some conditions, Dummigan [Theorem 4.1, Du]
shows that if an elliptic curve E′/Q in the isogeny class of E has a Q-rational point
of order l then so has E. To prove it, he [Proposition 3.2 and Corollary 3.3, Du]
use Dedekind eta-products and explicitly construct a Q-rational cuspidal divisor
of degree 0 in J0(N) whose order is divisible by l. In order to apply Dummigan’s
result to prove Theorem 1.3, we combine Proposition 3.2, Corollary 3.3, Theorem
4.1 in [Du] and obtain the following proposition.

Proposition 4.1 ([Du]) Let E/Q be an optimal elliptic curve of square-free con-
ductor N . Let X0(N) be the modular curve of level N with Jacobian J0(N),
φ : X0(N) → E a surjective morphism, which factors in J0(N) through π :
J0(N) → E, and π∗ : E → J0(N) its injective dual map. Let F be the associ-
ated newform, and for d|N let ωd = ±1 be such that WdF = ωdF , where Wd is the
Atkin-Lehner involution. Let G be the product of those primes such that ωp = 1.
Define a divisor Q supported on the cusps of X0(N) and the Dedekind eta-product
gr;

Q :=
∑

δ|(N/G)

ωδ(PδG) and gr := (
∏
g|G

∏
d|(N/G)

η
ωdµ(g)g
dg )24/h,

where h := (r, 24), r :=
∏

p|G(p2−1)
∏

p|(N/G)(p−1), and µ is the Möbius function.
If ωp = −1 for at least one prime p|N , then

(i) Q is a Q-rational cuspidal divisor of degree 0,
(ii) g2

r ∈ Q(X0(N)) and div (g2
r) = (−1)tωN (2n)Q, where n := r/h and t is the

number of prime divisors of N ,
(iii) the exact order of the rational point [Q] in J0(N) is either n or 2n,
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(iv) if there is an elliptic curve E′/Q which is isogenous over Q to E and has a
Q-rational l-torsion point, where l is an odd prime such that l 6 |N and l|n, then
E has a Q-rational l-torsion point P such that π∗(P ) = R := 2n

l [Q].

Now we can prove Theorem 1.3.

Proof of Theorem 1.3; We will show that if E is an optimal elliptic curve which
satisfies the conditions in Theorem 1.3, E satisfies the conditions in Theorem 1.2.

By the condition (i) in Theorem 1.3, we have ε = −ωN = −ωp · ωq = +1; the
condition (i) in Theorem 1.2. And by Proposition 4.1, we can construct Q-rational
cuspidal divisor Q of degree 0;

Q =
∑
δ|p

ωδ(Pδq) = (Pq)− (Ppq),

and the Dedekind eta-product gr ∈ Q(X0(N));

gr = (
∏
g|q

∏
d|p

η
ωdµ(g)g
dg )24/h = (

η1η
q
pq

ηpη
q
q

)24/h,

where h = ((q2 − 1)(p− 1), 24). And

div(g2
r) = −(2n)Q,

where n = (q2 − 1)(p− 1)/((q2 − 1)(p− 1), 24). We note that 3 6 |N = pq and 3|n.
Thus by the condition (ii) in Theorem 1.3 and Proposition 4.1 (iv), we easily see
that E satisfies the conditions (ii),(iii) in Theorem 1.2.

Finally the corresponding eta-product g−2
r to R = 2n

3 [Q] is not a cubic because

p
(q−1)· 24

((q2−1)(p−1),24) is not a cubic. Thus E satisfies the condition (iv) in Theorem
1.2 and we completed the proof. 2

5 Proof of Theorem 1.1

Let G(x) ∈ Z[x] be a polynomial of degree k with positive leading coefficient.
Perelli [Pe] and Brüdern, Kawada and Wooley [B-K-W] proved that almost all
values of the polynomial 2G(m) are the sum of two primes. We slightly modify
the result to show that there are infinitely many elliptic curves satisfying the
conditions in Theorem 1.3.
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Proposition 5.1 ([B-K-W]) Let G(x) ∈ Z[x] be a polynomial of degree k with
positive leading coefficient and A, B be positive integers such that (A,B) = 1. Let
Sk(M,G) denote the number of natural numbers m with 1 ≤ m ≤ M , for which
the equation

2G(m) = Ap1 + Bp2

has no solution in primes p1, p2. Then there is an absolute constant c > 0 such
that

Sk(M,G) �G M1−c/k.

Proof: We define S(Aα) :=
∑

p≤X(log p)e(Aαp), e(α) := e2πiα, where the sum-
mation is over prime numbers and define

r(m) :=
∫ 1

0
S(Aα)S(Bα)e(−αm)dα.

Then r(2G(m)) counts the solutions of 2G(m) = Ap1+Bp2 with weight (log p1)(log p2).
If we directly follow the proof of Theorem 1 in [B-K-W], we obtain r(2G(m)) > 0
for each integer m with 1 ≤ m ≤ M , with at most O(M1−c/k) possible exceptions
for a constant c > 0, which does not depend on A,B and G(x). 2

Now we can prove Theorem 1.1.

Proof of Theorem 1.1; Let E′/Q : y2 + a1xy + a3y = x3, a1, a3 ∈ Z. Then the
point (0, 0) ∈ E′(Q) is a 3-torsion point. The discriminant ∆ of E′ is

∆ = a3
3(a

3
1 − 27a3).

Now we assume that 2, 3 6 |∆ and (a1, a3) = 1. Then since c4 := a1(a3
1 − 24a3), we

easily see that for every prime factor t of ∆, E′/Q has multiplicative reductions at
t. Thus the conductor N of E′ is square-free. Furthermore, for every prime factors
t of a3, clearly E′ has a split multiplicative reduction at t. On the other hand, for
every prime factor t ≡ −1 (mod 3) of (a3

1 − 27a3) has a non-split multiplicative
reduction at t and for every prime factor t ≡ 1 (mod 3) of (a3

1 − 27a3) has a split
multiplicative reduction at t because the slopes of the tangent lines at the node
(−a2

1/9, a3
1/27) ∈ E′(Ft) are (−3a1 ± a1

√
−3)/6.

Let G(x) := (9(2x + 1)− 1)3/2. Then by Proposition 5.1, we know that there
are infinitely many m such that

2G(m) = (9(2m + 1)− 1)3 = 27p + q,
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for some primes p, q. For such m, p, q, let a1 := (9(2m+1)−1) and a3 := p (6= 3).
Then we have

∆ = p3q and N = pq,

where p 6= 3 and q ≡ −1 (mod 9). So E′ has a split multiplicative reduction at p
and has a non-split multiplicative reduction at q. Since the signs of Atkin-Lehner
involutions ωt = −1 or +1 according as the multiplicative reduction at primes t is
split or non-split, respectively, we have ωp = −1 and ωq = +1. Thus if we let E/Q
be the optimal elliptic curve of the isogeny class of E′/Q, then E satisfies all the
conditions in Theorem 1.3.

Hence we proved that there are infinitely many elliptic curves E satisfying the
conditions in Theorem 1.3. And we easily see that these elliptic curves E have
different j-invariants by the form of the conductors of E. Finally Theorem 1.1
immediately follows from Theorem 1.3. 2
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